Tag Archives: Journal article

An Intelligent Fuzzy Logic Controller for Maximum Power Capture of Point Absorbers


Mohammed Jama, Addy Wahyudie, Ali Assi, and Hassan Noura – Energies, June 2014

Abstract

This article presents an intelligent fuzzy logic controller (FLC) for controlling single-body heaving wave energy converter (WEC) or what is widely known as “Point Absorber”. The controller aims at maximizing the energy captured from the sea waves. The power take-off (PTO) limitations are addressed implicitly in the fuzzy inference system (FIS) framework. Continue reading

Leave a comment

Filed under Modeling

Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments


Eugen Rusu – Energies, June 2014

Abstract

The main objective of the present work was to assess and compare the wave power resources in various offshore and nearshore areas. From this perspective, three different groups of coastal environments were considered: the western Iberian nearshore, islands and an enclosed environment with sea waves, respectively. Some of the most representative existent wave converters were evaluated in the analysis and a second objective was to compare their performances at the considered locations, and in this way to determine which is better suited for potential commercial exploitation. Continue reading

Leave a comment

Filed under Resource Characterization

Wave power absorption: Experiments in open sea and simulation


M. Eriksson, R. Waters, O.Svensson, J. Isberg, and M. Leijon- Journal of Applied Physics, 2007

Abstract

A full scale prototype of a wave power plant based on a direct drive linear generator driven by a point absorber has been installed at the west coast of Sweden. In this paper, experimentally collected data of energy absorption for different electrical loads are used to verify a model of the wave power plant including the interactions of wave, buoy, generator, and external load circuit. The wave-buoy interaction is modeled with linear potential wavetheory. The generator is modeled as a nonlinear mechanical damping function that is dependent on piston velocity and electric load. The results show good agreement between experiments and simulations. Potential wavetheory is well suited for the modeling of a point absorber in normal operation and for the design of future converters. Moreover, the simulations are fast, which opens up for simulations of wave farms.

Link

Leave a comment

Filed under Experiments, Field Measurements, Modeling

Sea Trials of a Wave Energy Converter in Strangford Lough, Northern Ireland


Vladimir Krivtsov, Ian Bryden, Brian Linfoot, and Robin Wallace – Journal of Shipping and Ocean Engineering, 2013

Abstract

This paper describes a campaign of WEC (wave energy converter) testing and presents a selection of the results related to the measured motions and mooring tensions. A 1:20 physical model has been successfully deployed using a three point mooring installed at sea (Strangford Lough, NI) in 10 m depth. Continue reading

Leave a comment

Filed under Experiments, Modeling, Testing Infrastructure

The role of tidal asymmetry in characterizing the tidal energy resource of Orkney


Simon P. Neill, M. Reza Hashemi, and Matt J. Lewis – Renewable Energy, August 2014

Abstract

When selecting sites for marine renewable energy projects, there are a wide range of economical and practical constraints to be considered, from the magnitude of the resource through to proximity of grid connections. One factor that is not routinely considered in tidal energy site selection, yet which has an important role in quantifying the resource, is tidal asymmetry, i.e. variations between the flood and ebb phases of the tidal cycle. Here, we present theory and develop a high-resolution three-dimensional ROMS tidal model of Orkney to examine net power output for a range of sites along an energetic channel with varying degrees of tidal asymmetry. Since power output is related to velocity cubed, even small asymmetries in velocity lead to substantial asymmetries in power output. We also use the 3D model to assess how tidal asymmetry changes with height above the bed, i.e. representing different device hub heights, how asymmetry affects turbulence properties, and how asymmetry is influenced by wind-driven currents. Finally, although there is minimal potential for tidal phasing over our study site, we demonstrate that regions of opposing flood- versus ebb-dominant asymmetry occurring over short spatial scales can be aggregated to provide balanced power generation over the tidal cycle.

Link

Leave a comment

Filed under Modeling, Resource Characterization

Flow–structure–seabed interactions in coastal and marine environments


B. Mutlu Sumer – Journal of Hydraulic Research,  March 2013

Abstract

Flow–structure–seabed interaction in coastal and marine environments is a rapidly growing area of research and applications. In this vision paper, this area is discussed with a view of identifying its state of the art and current research challenges. The discussion draws attention to key issues related to structures such as marine pipelines, offshore windfarms, and multiuse offshore platforms. Tsunamis, which received considerable attention after two recent extreme events (2004 Indonesia tsunami and 2011 Japan tsunami) are also included in the discussion. Marine hydro-geomechanics is highlighted, among other areas, as an emerging branch of Marine Civil Engineering. Predictions of the field development for the forthcoming years are also briefly outlined.

Link

Leave a comment

Filed under other Cross cutting, Review

A review on flow energy harvesters based on flapping foils


Qing Xiao and Qiang Zhu – Journal of Fluids and Structures, April 2014

Abstract

This article presents an overview of the state of the art investigations on the recently developed oscillating foil energy converters. A summary of available knowledge and up-to-date progress in the application of such bio-inspired systems for renewable energy devices is provided. Starting from concepts and achieved results in three distinguishable categories, various parametric studies are reviewed, along with an in-depth discussion on the potential device performance enhancement via flow control mechanisms. Finally, potential future research directions are discussed.

Link

Leave a comment

Filed under Review

Investigation of Wave-Structure Interaction Using State of the Art CFD Techniques


Jan Westphalen, Deborah M. Greaves, Alison Raby, Zheng Zheng Hu, Derek M. Causon, Clive G. Mingham, Pourya Omidvar, Peter K. Stansby, and Benedict D. Rogers – Open Journal of Fluid Dynamics, March 2014

Abstract

The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fully nonlinear time domain CFD is often considered to be an expensive and computationally intensive option for marine hydrodynamics and frequency-based methods are traditionally preferred by the industry. However, CFD models capture more of the physics of wave-structure interaction, and whereas traditional frequency domain approaches are restricted to linear motions, fully nonlinear CFD can simulate wave breaking and overtopping. Continue reading

Leave a comment

Filed under Modeling

Experimental Study of Darrieus-Savonius Water Turbine with Deflector: Effect of Deflector on the Performance


Kaprawi Sahim, Kadafi Ihtisan, Dyos Santoso, and Riman Sipahutar – International Journal of Rotating Machinery, February 2014

Abstract

The reverse force on the returning blade of a water turbine can be reduced by setting a deflector on the returning blade side of a rotor. The deflector configuration can also concentrate the flow which passes through the rotor so that the torque and the power of turbine can be considerably increased. The placing of Savonius in Darrieus rotor is carried out by setting the Savonius bucket in Darrieus rotor at the same axis. The combination of these rotors is also called a Darrieus-Savonius turbine. This rotor can improve torque of turbine. Experiments are conducted in an irrigation canal to find the performance characteristics of presence of deflector and Savonius rotor in Darrieus-Savonius turbine. Results conclude that the single deflector plate placed on returning blade side increases the torque and power coefficient. The presence of Savonius rotor increases the torque at a lower speed, but the power coefficient decreases. The torque and power coefficient characteristics depend on the aspect ratio of Savonius rotor.

Link

Leave a comment

Filed under Component Development, Experiments

Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa


Kanzumba Kusakana – Energy, February 2014

Abstract

Hydrokinetic power generation is a relatively recent type of hydropower that generates electricity from kinetic energy of flowing water making the conversion process more competitive compared to traditional micro-hydropower. Few authors have already analyzed the use of standalone hydrokinetic systems for rural electrification, however, there is no available literatures investigating the possibility of using this technology in combination with other renewable energy sources or diesel generator. Therefore, the aim of this paper is to investigate the potential use of hydrokinetic-based hybrid systems for low cost and sustainable electrical energy supply to isolated load in rural South Africa where adequate water resource is available. Continue reading

Leave a comment

Filed under Economics