Model predictive control of sea wave energy converters – Part II: The case of an array of devices


Guang Li and Mike R. Belmont, Renewable Energy – August 2014


This paper addresses model predictive control (MPC) of highly-coupled clusters of sea wave energy converters (WECs). Since each WEC is not only a wave absorber but also a wave generator, the motion of each WEC can be affected by the waves generated by its adjacent WECs when they are close to each other. A distributed MPC strategy is developed to maximize the energy output of the whole array and guarantee the safe operation of all the WECs with a reasonable computational load. The system for an array is partitioned into subsystems and each subsystem is controlled by a local MPC controller. The local MPC controllers run cooperatively by transmitting information to each other. Within one sampling period, each MPC controller performs optimizations iteratively so that a global optimization for the whole array can be approximated. The computational burden for the whole array is also distributed to the local controllers. A numerical simulation demonstrates the efficacy of the proposed control strategy. For the WECs operating under constraints explored, it is found that the optimized power output is an increasing function of degree of WEC–WEC coupling. Increases in power of up to 20% were achieved using realistic ranges of parameters with respect to the uncoupled case.



Leave a comment

Filed under Modeling, System Development, Wave

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s