Experimental Evaluation of a Mixer-Ejector Marine Hydrokinetic Turbine at Two Open-Water Tidal Energy Test Sites in NH and MA

Matthew Rowell, Martin Wosnik, Jason Barnes, and Jeffrey P. King – Marine Technology Society Journal, August 2013


For marine hydrokinetic energy to become viable, it is essential to develop energy conversion devices that are able to extract energy with high efficiency from a wide range of flow conditions and to field test them in an environment similar to the one they are designed to eventually operate in. FloDesign Inc. developed and built a mixer-ejector hydrokinetic turbine (MEHT) that encloses the turbine in a specially designed shroud that promotes wake mixing to enable increased mass flow through the turbine rotor. A scaled version of this turbine was evaluated experimentally, deployed below a purpose-built floating test platform at two open-water tidal energy test sites in New Hampshire and Massachusetts and also in a large cross-section tow tank. State-of-the-art instrumentation was used to measure the tidal energy resource and turbine wake flow velocities, turbine power extraction, test platform loadings, and platform motion induced by sea state. The MEHT was able to generate power from tidal currents over a wide range of conditions, with low-velocity start-up. The mean velocity deficit in the wake downstream of the turbine was found to recover more quickly with increasing levels of free stream turbulence, which has implications for turbine spacing in arrays.



Leave a comment

Filed under Experiments, Instrumentation, System Development, Testing Infrastructure

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s