Lift and drag characteristics of a cascade of flat plates in a configuration of interest for a tidal current energy converter: Numerical simulations analysis

D. Cebrián, J. Ortega-Casanova, and R. Fernandez-Feria – J. Renewable Sustainable Energy, 2013


Numerical simulations of the three-dimensional flow through a cascade of flat plates are conducted to analyze its lift and drag characteristics in a configuration of interest for a particular type of tidal hydrokinetic energy converter. To that end, the turbulent model parameters in the computational fluid dynamics code are validated against experimental data for the flow around an isolated plate at different angles of incidence and the same Reynolds number used in the cascade. The lift and drag coefficients of a plate in the cascade, as well as the effective nondimensional power extracted from the tidal current, are compared to the corresponding values for an isolated plate. These results are used as a guide for the design of the optimum configuration of the cascade (angle of attack, blade speed, and solidity) which extracts the maximum power from a tidal current for a given reference value of the Reynolds number.



Leave a comment

Filed under Component Development, Modeling

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s