Displacement response to axial cycling of piles driven in sand

S.P. Rimoy, R.J. Jardine, J.R. Standing – Proceedings of the ICE – Geotechnical Engineering, March, 2013


A review of the load applied to multi-pile offshore wind turbine foundations is presented, from which the need to consider the response to axial cyclic loading is emphasised. The paucity of available data on field tests on driven piles in sand is noted. A comprehensive data set of multiple axial cyclic and static tests conducted on seven industrial-scale steel pipe-piles at a marine sand site in Dunkerque, France, is re-examined in this paper. The effects of cycling on axial capacity are interpreted by reference to stable, metastable or unstable zones defined in a normalised cyclic stability interaction diagram. A detailed analysis is made of the load–displacement and stiffness response associated with each mode of cycling. It is shown that in all cases the piles’ cyclic stiffnesses show only minor changes until cyclic failure is approached. The patterns of permanent cyclic strain accumulation are sensitive to the applied mean and cyclic loading levels. Whereas displacements accumulate rapidly over just a few cycles in the unstable zone, extended cycling in the stable zone leads to minimal accumulated displacements and constant transient cyclic displacements.



Leave a comment

Filed under Component Development, Field Measurements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s