Monthly Archives: September 2011

Whitestone Poncelet RISEC Project


Hasz Consulting, LLC, Whitestone Power and Communications, and CE2 Engineers, – Technical Report submitted to DOE EERE Wind & Water Power Program, September 2011

Abstract

This report covers the development of the Poncelet Kinetics RHK100 Prototype. The work was completed by Hasz Consulting, LLC; CE2 Engineers, LLC; Energetic Drives, LLC; and Applied Power and Control all operating as subcontractors to Whitestone Power and Communications during the year from October 1, 2010 to September 23, 2011. As designed, the prototype is run-of-river instream energy conversion (RISEC) system. The design is principally a three-stage undershot water wheel arranged according to the method of General Poncelet. The power train consists of an epicyclic transmission coupled to a permanent magnet generator. The electronic controls system governs the speed of the wheel and rectifies the power signal to enable the system to be integrated with infinite grid infrastructures, to operate in parallel in finite grid applications with other small power productions sources or to operate in stand-alone mode on demand.

Link

Leave a comment

Filed under System Development

OTEC Advanced Composite Cold Water Pipe


A. Miller and M. Ascari – Technical Report submitted to DOE EERE Wind & Water Power Program, September, 2011

Abstract

Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow ‘planks,’ holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline between successive stepwise infusions.

Link

Leave a comment

Filed under Component Development

Submersible generator for marine hydrokinetics


R.S. Cinq-Mars, T. Burke, J. Irish, B. Gustafson, J. Kirtley, and A. Alawa – Technical Report submitted to DOE EERE Wind & Water Power Program, September, 2011

Abstract

A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc.

Link

Leave a comment

Filed under Component Development